Effect of silver on the phase transition and wettability of titanium oxide films

نویسندگان

  • Adolfo A. Mosquera
  • Jose M. Albella
  • Violeta Navarro
  • Debabrata Bhattacharyya
  • Jose L. Endrino
چکیده

The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Annealing temperature effect on nanostructure and phase transition of Copper Oxide thin films

This paper addresses the annealing temperature effect on nanostructure and phase transition of copper oxide thin films, deposited by PVD method on glass substrate (at 110 nm thickness) and post annealed at different temperatures (200-400°C) with a flow of 1 cm3s-1 Oxygen. The X-ray diffraction (XRD) was employed for crystallographic and phase analyses, while atomic force m...

متن کامل

Annealing temperature effect on nanostructure and phase transition of Copper Oxide thin films

This paper addresses the annealing temperature effect on nanostructure and phase transition of copper oxide thin films, deposited by PVD method on glass substrate (at 110 nm thickness) and post annealed at different temperatures (200-400°C) with a flow of 1 cm3s-1 Oxygen. The X-ray diffraction (XRD) was employed for crystallographic and phase analyses, while atomic force m...

متن کامل

Evaluation of Electrical Breakdown of Anodic Films on Titanium in Phosphate-base Solutions

Titanium is a highly reactive metal so that a thin layer of oxide forms on its surface whenever exposed to the air or other environments containing oxygen. This layer increases the corrosion resistance of titanium. The oxide film is electrochemically formed through anodizing. In this study, anodizing of titanium was performed in phosphate-base solutions such as H3Po4, NaH2Po4, and Na2Hpo4 at 9....

متن کامل

Evaluation of Electrical Breakdown of Anodic Films on Titanium in Phosphate-base Solutions

Titanium is a highly reactive metal so that a thin layer of oxide forms on its surface whenever exposed to the air or other environments containing oxygen. This layer increases the corrosion resistance of titanium. The oxide film is electrochemically formed through anodizing. In this study, anodizing of titanium was performed in phosphate-base solutions such as H3Po4, NaH2Po4, and Na2Hpo4 at 9....

متن کامل

Inhibition of Staphylococcus aureus growth in fresh calf minced meat using low density Polyethylene films package promoted by titanium dioxide and zinc oxide nanoparticles

Antibacterial properties of TiO2, ZnO as well as mixed TiO2-ZnO nanoparticles coated low density polyethylene films on Staphylococcus aureus PTCC1112 were investigated. Bactericidal efficiency of 0.5, 1 and 2 Wt% for TiO2 and ZnO nanoparticles and also 1 Wt% mixed TiO2-ZnO nanoparticles with TiO2:ZnO ratios of 25:75, 50:50 and 75:25 were tested under UV and fluorescent lights exposure at two di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016